

A building is being supplied by a 3 ϕ 4-Wire 120/208 60 Hz Wye system. Circuit 2 is feeding a 3-kW heater, circuit 4 is feeding a 0.2 H coil that has 7 Ω of resistance and circuit 6 is feeding a 0.4 H coil that has 15 Ω of resistance and a 20 μF capacitor.

Circuits 2, 4 and 6 all share a common neutral that is a #10 AWG R90. Is this acceptable?

Calculating the neutral current:

Circuit 2 (Phase A)	Circuit 4 (Phase B)	Circuit 4 (Phase C)
Purely Resistive $P = IE$ $I = \frac{P}{E}$ $I = \frac{3,000}{120}$	Resistive / Inductive $I = \frac{E}{Z}$ $R_{COIL} = 7 \Omega$ $XL_{COIL} = 2\pi fL$ $XL_{COIL} = 2\pi(60)(0.2)$ $XL_{COIL} = 75.39822369 \Omega$ $Z_{CCT} = \sqrt{R^2 + XL_{COIL}^2}$ $Z_{CCT} = \sqrt{7^2 + 75.39822369^2}$ $Z_{CCT} = 75.72246784$ $I = \frac{120}{75.72246784}$ $I = 1.584734405$	Resistive / Inductive / Capacitive $I = \frac{E}{Z}$ $R_{COIL} = 15 \Omega$ $XL_{COIL} = 2\pi fL$ $XL_{COIL} = 2\pi(60)(0.4)$ $XL_{COIL} = 150.7964474 \Omega$ $XC_{CAP} = \frac{1}{2\Omega fC}$ $XC_{CAP} = \frac{1}{2\Omega(60)(0.000002)}$ $XC_{CAP} = 132.6291192 \Omega$ $X_T = XL - XC$ $X_T = 150.7964474 - 132.6291192$ $X_T = 18.1673282 \Omega$
	$PF_{COIL} = \frac{R_{COIL}}{Z_{COIL}}$ $PF_{COIL} = \frac{7}{75.72246784}$ $PF_{COIL} = 0.09244284$ $PF\angle_{COIL} = 84.69584243^\circ$	$Z_{CCT} = \sqrt{R^2 + X_T^2}$ $Z_{CCT} = \sqrt{15^2 + 18.1673282^2}$ $Z_{CCT} = 23.55953764 \Omega$ $I = \frac{120}{23.55953764}$ $I = 5.093478566 \Omega$
		$PF_{COIL} = \frac{R_{COIL}}{Z_{COIL}}$ $PF_{COIL} = \frac{15}{23.55953764}$ $PF_{COIL} = 0.63668482$ $PF\angle_{COIL} = 50.45494322^\circ$
<u>$I = 25 \text{ A} @ 0^\circ$</u>	<u>$I = 1.591549431 \text{ A} @ 84.69584243^\circ$</u>	<u>$I = 5.093478566 \text{ A} @ 50.45494322^\circ$</u>

Now that each phase has been calculated, we can calculate the Neutral Current.

$$I_A = 25 \text{ A} @ 0^\circ$$

$$I_B = 1.591549431 \text{ A} @ 84.69584243^\circ \text{ (LAG)}$$

$$I_C = 5.093478566 \text{ A} @ 50.45494322^\circ \text{ (LAG)}$$

We know that phases B and C have a lagging power factor because there is more inductive reactance in both when we calculated them out on page 1. Since Phase A is our reference at 0 (or 360)° then the origin angles for Phase B is 240° and Phase C is 120°. This tells us:

$$I_A = 25 \text{ A} @ 360^\circ - 0^\circ$$

$$I_B = 1.591549431 \text{ A} @ 240^\circ - 84.69584243^\circ$$

$$I_C = 5.093478566 \text{ A} @ 120^\circ - 50.45494322^\circ$$

We are left with:

$$I_A = 25 \text{ A} @ 360^\circ$$

$$I_B = 1.591549431 \text{ A} @ 155.3041576^\circ$$

$$I_C = 5.093478566 \text{ A} @ 69.54505678^\circ$$

Plot Polar form to Rectangular Form

Phase	Horizontal	Vertical
$I_A = 25 \text{ A} @ 360^\circ$	25.000000000	0.000000000
$I_B = 1.591549431 \text{ A} @ 155.3041576^\circ$	-1.445983928	0.664951179
$I_C = 5.093478566 \text{ A} @ 69.54505678^\circ$	1.780021439	4.772320984
Totals	25.33403751	5.437272163

$$I_N = \sqrt{25.33403751^2 + 5.437272163^2}$$

$$I_N = 25.91095107 \text{ A}$$

$$I_{pf} = 25.33403751 \div 25.91095107$$

$$I_{pf} = 0.977734759$$

$$I_Z = 12.11324335$$

$$I_N = 25.911 \text{ A} @ 12^\circ$$

As per Table 2 of the CEC, #10 AWG conductors have an allowable ampacity of 35 A at a 75°C temperature rating. This cable would be sufficient to carry the neutral load.